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Abstract
The fundamental assumption of transition state theory is the existence of a
dividing surface having the property that trajectories originating in reactants
(resp. products) must cross the surface only once and then proceed to products
(resp. reactants). Recently it has been shown (Wiggins et al (2001) Phys.
Rev. Lett. 86 5478; Uzer et al (2002) Nonlinearity 15 957) how to construct
a dividing surface in phase space for Hamiltonian systems with an arbitrary
(finite) number of degrees of freedom having the property that trajectories only
cross once locally. In this letter we provide an argument showing that the
flux across this dividing surface is a minimum with respect to certain types of
variations of the dividing surface.

PACS numbers: 82.20.Db, 82.20.Nk, 05.45.−a

1. Introduction

Transition state theory provides a fundamental framework for computing chemical reaction
rates. The original ideas are due to Wigner, Polanyi and Eyring, yet much work on different
aspects of the subject continue to this day (see the recent reviews of [1, 2]). In recent years
transition state theory has been shown to be much more widely applicable than just for problems
in chemical reactions. It has been used in atomic physics [3], studies of the rearrangements
of clusters [4], solid state and semi-conductor physics [5, 6], cosmology [7] and celestial
mechanics [8].

The fundamental assumption of transition state theory is the existence of a dividing surface
having the property that trajectories originating in reactants (resp. products) must cross the
surface only once and then proceed to products (resp. reactants). The rate of the reaction from
reactants to products (or vice versa) is proportional to the directional flux through the dividing
surface. The construction of such a surface in specific systems, especially those with more than
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Figure 1. (a) Equipotentials and PODS (bold line) near a saddle. (b) Saddle plane (q1, p1) with
projections of the (2n − 1)-dimensional energy surface H = E for E > 0 (all but the hatched
region), the stable and unstable spherical cylinder (the p1-axis and the q1-axis), the NHIM (the
origin), and the (2n − 2) spheres p1 − q1 = 0 (dividing surface). The light and dark grey regions
are the projections of the energy surface volumes enclosed by the forward and backward reactive
spherical cylinder Wf (E) and Wb(E), respectively. p1 − q1 = ±c, c > 0, delimit the region of
validity of the normal form.

two degrees of freedom (DOF), has posed extreme difficulties. The phenomenon of recrossing
of a dividing surface gives rise to a larger value for the flux, which naturally inspires the idea
of varying the dividing surface so that the flux is minimized, and it has lead to the subject
of variational transition state theory, first proposed by Wigner [9], with recent developments
discussed in [10, 11].

For systems with two DOF described by a Hamiltonian H of the simple type kinetic-plus-
potential the problem of constructing a dividing surface with trajectories only crossing once
and having minimum flux was solved during the 1970s by McLafferty, Pechukas and Pollak
[12–15]. They considered the line segment in configuration space given by the projection of
an unstable periodic orbit (the Lyapunov periodic orbit associated with a saddle point of the
potential). Figure 1(a) shows this line segment which is referred to as a repulsive periodic
orbit dividing surface (repulsive PODS) for simplicity in a symmetric potential (see the original
references for the precise meaning of the term ‘repulsive’). For fixed energy it connects two
pieces of an equipotential surface and this way separates the reactant region (the part with
x < 0 enclosed by the respective equipotential in figure 1(a)) from the product region (the part
with x > 0 enclosed by the respective equipotential in figure 1(a)). The repulsive PODS solves
the problem of (local) recrossings as there is no trajectory evolving from reactants to products
(or vice versa) whose projection to configuration space is tangent to this line segment. After
a reacting trajectory has crossed the repulsive PODS it has to leave the neighbourhood of the
repulsive PODS before it can possibly recross it.

In order to understand, how the PODS theory can be generalized to systems with three
and more DOF, it is necessary to recognize a PODS as a phase space object. We therefore
rewrite the energy equation as

p2
x + p2

y = 2m(E − V(x, y)). (1)

For (x, y) on the projection of the periodic orbit in figure 1(a) the equation in (1) defines a family
of circles in (px, py) which shrink to points at the turning points of the periodic orbit. This
means that the PODS is a 2-sphere. The periodic orbit, which has px = 0, can be considered
as the equator of the PODS. It divides the PODS into two hemispheres, which have px > 0
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and px < 0, respectively. The flux from x < 0 (‘reactants’) to x > 0 (‘products’) through the
PODS in figure 1(a) is commonly written as

FE =
∫

dx dy dpx dpy δ(E − H)δ(x − x0) � (px)
px

m
. (2)

The step function �(px) effectively restricts the integral to one hemisphere of the PODS.
Using Stokes’ theorem it is not difficult to see that the flux in (2) is given by the action of the
periodic orbit (p.o.), i.e.

FE =
∮

p.o.

p dq.

It is useful to point out that there is some confusion in terminology in the chemistry
literature concerning the notion of ‘transition state’, which sometimes refers to the dividing
surface (the PODS), and sometimes to the periodic orbit, which is an invariant manifold
contained in the dividing surface. In the latter case, the phrase ‘a trajectory crosses the transition
state’ refers to the intersection of the configuration space projections of the trajectory and the
transition state. Note that a trajectory cannot cross an invariant manifold (in phase space). As
we will see below in more detail, the loose use of the term transition state occasionally leads
to confusion about how the dividing surface of minimal directional flux involves an invariant
manifold. The configuration space picture, which is the starting point in the PODS construction
by McLafferty, Pechukas and Pollak, breaks down, e.g. when a magnetic field is applied (or the
Hamiltonian contains Coriolis terms due to rotations), i.e. when the Hamiltonian is no longer
of the type kinetic-plus-potential. In this case the periodic orbit no longer projects to a line
segment in configuration space. The study of this case, and in particular the generalization of
PODS to three and more DOF, requires a phase space point of view.

Recently, it has been shown [16, 17] how to construct a dividing surface in phase space
for Hamiltonian systems with an arbitrary (but finite) number of DOF having the property that
trajectories only cross once locally. For this theory it is irrelevant whether the Hamiltonian has
Coriolis terms or not. It is important to understand that periodic orbits do not play a role in
constructing the dividing surface for more than two DOF due to dimensionality considerations.
In this sense the PODS theory simply does not hold for more than two DOF. A fundamentally
new geometrical object is required; a normally hyperbolic invariant manifold (NHIM), which
reduces to a periodic orbit for two DOF. The seed of this idea can be found in [18, 19].

In this letter we give a geometrical argument demonstrating that the many DOF dividing
surface realized in [16, 17] by a computational algorithm is indeed a surface of minimum
directional flux, i.e. the directional flux increases if the dividing surface is varied. The dividing
surface of [16, 17] is thus the optimal surface sought for in variational transition state theory.
To begin we must first recall the elements of the general theory developed in [16, 17].

2. Dividing surface for multi-dimensional systems

In the general case of n DOF we consider an equilibrium point of saddle-centre-· · ·-centre type,
i.e. the linearized vector field about the equilibrium point has one pair of real eigenvalues ±λ

and n − 1 imaginary eigenvalues ±iωk, k = 2, . . . , n, where without restriction of generality
λ, ωk > 0. Equilibria of this type are characteristic for systems with a reaction-type dynamics,
and they occur in all of the examples given in section 1. The transport is controlled by various
high-dimensional manifolds which can be realized and computed through a procedure based on
Poincaré–Birkhoff normalization. In fact, under general conditions (see [17] for the details),
near a saddle-centre-· · ·-centre one can construct a sequence of local, non-linear, symplectic
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transformations of the phase space coordinates that transform the Hamiltonian into

H = λp1q1 +
n∑

k=2

ωk

2
(p2

k + q2
k) + f1(I, q2, . . . , pn, q2, . . . , qn) + f2(q2, . . . , pn, q2, . . . , qn)

(3)

up to any desired order. Here (q1, . . . , qn, p1, . . . , pn) are canonical phase space coordinates,
I = p1 q1 and f1, f2 are at least of third order, i.e. they are responsible for the nonlinear term in
the Hamiltonian vector field. Moreover f1 has the property that it vanishes for I = 0. (q1, p1)

play the role of reaction coordinates. (q2, . . . , qn, p2, . . . , pn) are the bath coordinates.
The importance of saddle-centre-· · ·-centre equilibria for reaction-type dynamics can be

inferred from the topology of energy surfaces H = E. First consider the quadratic Hamiltonian
given by the first part in (3) and write the energy equation as

E + λ

4
(p1 − q1)

2 = λ

4
(p1 + q1)

2 +
n∑

k=2

ωk

2
(p2

k + q2
k). (4)

For E < 0 the left-hand side is positive for p1 −q1 < −(−4E/λ)1/2 or p1 −q1 > (−4E/λ)1/2.
For a fixed p1 − q1 in either of these ranges the equation in (4) defines a (2n− 2)-dimensional
sphere S2n−2. For p1 − q1 = ±(−4E/λ)1/2 the (2n − 2) spheres shrink to points. The
energy surface thus appears as two disjoint spherical cones which correspond to ‘reactants’
and ‘products’, respectively. Increasing the energy to E > 0, the left-hand side of (4) is strictly
positive. The formerly disjoint components merge and the energy surface becomes a spherical
cylinder S2n−2 × R. Restricting to a sufficiently small neighbourhood by confining p1 − q1

to an interval I = [−c, c] with c > 0 sufficiently small and with E sufficiently close to zero,
the topological consideration remains true if the non-linear terms f1 and f2 are taken into
account. Moreover, for a high but finite-order normal form, the error arising from neglecting
the non-normalized ‘tail’ of the Hamiltonian can be made as small as desired by choosing the
interval [−c, c] sufficiently small and E sufficiently close to zero.

The importance of the normal form arises from the fact that it gives explicit expressions
for all the manifolds which control the dynamics from reactants to products. For a fixed energy
E > 0 the manifolds are the following.

• The saddle sphere S2n−3
NHIM(E). On the energy surface H = E the equation p1 = q1 = 0

defines a (2n−3) sphere which we denote by S2n−3
NHIM(E). It can be considered as a ‘big saddle’.

In fact, it is a so-called normally hyperbolic invariant manifold (NHIM) where normal
hyperbolicity means that the expansion and contraction rates transverse to the manifold
dominate those tangent to the manifold.

• The forward and backward reactive spherical cylinders Wf (E) and Wb(E). The saddle
sphere has stable and unstable manifolds Ws(E) and Wu(E) which are iso-energetic, i.e.
contained in the energy surface, and which are explicitly given by q1 = 0 and p1 = 0,
respectively. These invariant manifolds have the topology of spherical cylinders S2n−3 × I.
Since they are of codimension 1 in the energy surface, i.e. they are of one dimension less than
the energy surface, they act as impenetrable barriers. Ws(E) and Wu(E) each appear as two
branches. We call the branch of Ws(E), which has p1 > 0, the forward branch Ws

f (E) and
the branch, which has p1 < 0, the backward branch Ws

b(E). Likewise, the forward branch
Wu

f (E) of Wu(E) has q1 > 0 and the backward branch Wu
b (E) has q1 < 0. We call the

union of the forward branches, Wf (E) := Ws
f (E) ∪ Wu

f (E), the forward reactive spherical
cylinder. Similarly, we call the union of the backward branches, Wb(E) := Ws

b(E)∪Wu
b (E),

the backward reactive spherical cylinder. The significance of these spherical cylinders arises
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from the fact that they enclose volumes of the energy surface which contain all forward and
all backward reactive trajectories, respectively. All non-reactive trajectories are contained
in the complement of these two volumes.

We define the dividing surface as follows.

• The dividing surface S2n−2
ds (E): on the energy surface H = E the equation p1 = q1 defines a

(2n− 2) sphere which we denote by S2n−2
ds (E). It is of codimension 1 in the energy surface.

It divides the energy surface into two components: the reactant region p1 − q1 > 0 and
the product region p1 − q1 < 0. The saddle sphere S2n−3

NHIM(E) can be considered as the
‘equator’ of the dividing surface. It divides S2n−2

ds (E) into two hemispheres: the forward
hemisphere B2n−2

ds, f (E), which has p1 = q1 > 0, and the backward hemisphere B2n−2
ds, b (E),

which has p1 = q1 < 0. B2n−2
ds, f (E) and B2n−2

ds, b (E) are topological (2n − 2) balls. Except
for its equator, which is an invariant manifold, the dividing surface is everywhere transverse
to the Hamiltonian flow as is easily seen from the equations of motions derived from the
normal form Hamiltonian (3). This means that a trajectory, after having crossed the dividing
surface, has to leave the neighbourhood of the dividing surface before it can possibly cross
it again, i.e. the dividing surface locally is a ‘surface of no return’.

An important advantage of the normal form coordinates is that dynamical issues related
to flux and reactivity can be understood to a great extent from the projection to the plane
of the reaction coordinates (q1, p1), see figure 1(b). Due to the constance of the saddle
integral I = p1q1 trajectories project to hyperbolas. Forward reactive trajectories, which
are enclosed by the forward reactive spherical cylinder Wf (E), project to the first quadrant
q1, p1 > 0. A forward reactive trajectory approaches the forward hemisphere B2n−2

ds, f (E) of the
dividing surface inside of the forward branch of the stable cylinder Ws

f (E) whose ‘interior’
projects to the part of the first quadrant above the diagonal p1 = q1 > 0. After crossing the
dividing surface, the trajectory leaves inside of the forward branch of the unstable spherical
cylinder Wu

f (E) whose ‘interior’ projects to the part of the first quadrant below the diagonal
p1 = q1 > 0. While similar considerations hold for the backward reactive trajectories, non-
reactive trajectories project to the second quadrant p1 > 0, q1 < 0 which corresponds to
reactants or to the fourth quadrant p1 < 0, q1 > 0 which corresponds to products. Therefore
reactive trajectories have I = p1q1 > 0 and non-reactive trajectories have I = p1q1 < 0.

3. Minimal flux property of the dividing surface

Consider at first the phase space volume form � = dp1 ∧ dq1 ∧ · · · ∧ dpn ∧ dqn, which in
terms of the symplectic 2-from ω = ∑n

k=1 dpk ∧ dqk can be written as � = ωn/n!. Let η be
an energy surface volume form defined via the property dH ∧ η = �. Then the flux through
a codimension 1 submanifold of the (2n − 1)-dimensional energy surface H = E is obtained
by integrating over it the ‘flux’ form �′ given by the interior product of the Hamiltonian vector
field XH with η [20], i.e.

�′ = iXH
η = 1

(n − 1)!
ωn−1, (5)

where iXH
η(ξ1, . . . , ξ2n−2) = η(ξ1, . . . , ξ2n−2, XH) for any 2n − 2 vectors ξk. The second

equality in (5) is easily established on a non-critical energy surface, i.e. on an energy surface
which contains no equilibria. The flux form �′ is exact. In fact, the generalized ‘action’ form

ϕ =
n∑

k=1

pk dqk ∧ 1

(n − 1)!
ωn−2
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has the property dϕ = �′ and facilitates the use of Stokes’ theorem to compute the flux. In the
case of two DOF we simply have �′ = ω = dp1 ∧ dq1 + dp2 ∧ dq2 and ϕ = p1dq1 + p2dq2.

Since the dividing surface S2n−2
ds (E) is a sphere, that is, a manifold without boundary, it

follows from Stokes’ theorem that the integral of �′ over S2n−2
ds (E) is zero. As in the case of

PODS one has to distinguish between the directions in which the Hamiltonian flow crosses
the dividing surface. Given a normal bundle over S2n−2

ds (E) the direction can be specified by
the sign of the scalar product between the normal vectors and the Hamiltonian vector field.
This scalar product is strictly positive on one of the hemispheres of S2n−2

ds (E), strictly negative
on the other hemisphere and zero only at the equator of S2n−2

ds (E), i.e. at the saddle sphere
S2n−3

NHIM(E), where the Hamiltonian vector field is tangent to S2n−2
ds (E). Similarly, the flux

form �′ on S2n−2
ds (E) vanishes nowhere on B2n−2

ds, f (E) and B2n−2
ds, b (E) and is identically zero on

S2n−3
NHIM(E). It is natural to take as the orientation of B2n−2

ds, f (E) and B2n−2
ds, b (E) the orientation

they inherit from the dividing surface. Without restriction we may assume that the orientation
of S2n−2

ds (E) is such that �′ is positive on the forward hemisphere B2n−2
ds, f (E) and negative

on the backward hemisphere B2n−2
ds, b (E), i.e. �′ and −�′ can be considered as volume forms on

B2n−2
ds, f (E) and B2n−2

ds, b (E), respectively. It follows from Stokes’ theorem that the flux through
the forward and backward hemispheres,

∫
B2n−2

ds, f (E)
�′ and

∫
B2n−2

ds, b (E)
�′, have the same magnitude

but opposite sign and can be computed by integrating the action form ϕ over the saddle
sphere:

∫
B2n−2

ds, f (E)
�′ = −∫

B2n−2
ds, b (E)

�′ = |∫
S2n−3

NHIM(E)
ϕ|. We call the positive quantity

∫
B2n−2

ds, f (E)
�′

the forward flux and the negative quantity
∫
B2n−2

ds, f (E)
�′ the backward flux through S2n−2

ds (E).

We now show that the forward flux through S2n−2
ds (E) is minimal. This can be stated as a

variational problem and a result in this direction is obtained by MacKay [21] who proves that
the integral

∫
C

ϕ of the action form ϕ over codimension 2 submanifolds C of the energy surface
is stationary with respect to variations of C if and only if C is invariant under the Hamiltonian
flow. Since the saddle sphere S2n−3

NHIM(E) is an invariant manifold, MacKay’s result implies
that the ‘action’ of S2n−3

NHIM(E),
∫
S2n−3

NHIM(E)
ϕ, is stationary with respect to variations of S2n−3

NHIM(E).
MacKay considers arbitrary variations within the energy surface and this leads to an indefinite
variational principle. In fact, in the context of transition state theory it is more useful to consider
variations of the codimension 1 dividing surface S2n−2

ds (E), which in a sense that will become
clear below, imply variations of the codimension 2 saddle sphere S2n−3

NHIM(E) in a smaller, more
suitable class than in MacKay’s case.

Consider at first the case of two DOF for which it is possible to visualize the energy
surface S2 × I in three-dimensional space as a nested set of 2-spheres parametrized along the
interval I in radial direction. This is the so-called McGehee representation [22] which is shown
in the first panel of figure 2. We consider a slight generic, iso-energetic deformation of the
dividing surface S2

ds(E) that does not ‘preserve’ the saddle sphere S1
NHIM(E), i.e. S1

NHIM(E) is
not entirely contained in the deformed dividing surface, see figures 2(c)–(e). The deformation,
which we denote by S̃2

ds(E), is described mathematically as a graph over the dividing surface
S2

ds(E), and therefore S̃2
ds(E) inherits the orientation of S2

ds(E) (which is important because
we want to preserve certain aspects of the directionality of the flux, to be described below).
Since S̃2

ds(E) is chosen to lie in the energy surface, it still separates the energy surface into
two disjoint components like S2

ds(E). Also like S2
ds(E), the deformation S̃2

ds(E) contains a
circle S̃1(E) of points at which the Hamiltonian vector field is tangent to S̃2

ds(E). This can be
proven analytically, but intuitively it is easy to see from figure 2(d). S̃1(E) can be considered
as the equator of S̃2

ds(E); it divides S̃2
ds(E) into forward and backward hemispheres B̃2

ds, f(E)

and B̃2
ds, b(E) on which the flux form �′ is strictly positive and negative, respectively. S̃1(E)

can be considered as the deformation of S1
NHIM(E) induced by the deformation of S2

ds(E). It
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Figure 2. (a) McGehee representation of the dynamics and the geometry of the manifolds in an
energy surface H = E with E > 0 near a saddle-centre equilibirium point. The concentric spheres
represent p1 − q1 = c (outer sphere), p1 − q1 = 0 (dividing surface S2

ds(E), middle sphere),
and p1 − q1 = −c (inner sphere, not visible). The equator of the dividing surface is the periodic
orbit S1

NHIM(E). Ws
f (E), Wu

f (E), Ws
b(E) and Wu

b (E) are the forward and backward branches of its
stable and unstable cylinders (Ws

b(E), and Wu
b (E) are not visible). (b) Section of (a) with a plane

of constant angle about the symmetry axis in (a). The arrows indicate the Hamiltonian vector field.
Note that the vector field also has components out of this plane. (The energy surface H = E contains
no equilibrium points.) Trajectories in the white regions correspond to non-reactive trajectories.
(c) A deformation S̃2

ds(E) of the dividing surface S2
ds(E) and its intersections with the stable and

unstable manifolds of the Lyapunov periodic orbit S1
NHIM(E). The Hamiltonian vector field is

tangent to S̃2
ds(E) along a circle S̃1(E) marked by a dotted line (not completely visible). (d) The

same section as in (b) now also showing S̃2
ds(E) in this plane. The key point to note here is that

S̃1(E) (the intersection of the circle where the vector field is tangent to S̃2
ds(E)) moves into the

white, non-reactive region. (e) S̃1(E) divides S̃2
ds(E) into two hemispheres B̃2

ds, f (E) and B̃2
ds, b(E).

(The extra ‘bubbles’ shown in (e), that are not shown in (c), correspond to the intersection of S̃2
ds(E)

with Ws
b(E), and Wu

f (E), which are not visible in (c).)

should be realized that in contrast to the case of S1
NHIM(E), the Hamiltonian vector field is

not tangent to the deformation S̃1(E), i.e. S̃1(E) is not invariant under the Hamiltonian vector
field (S̃1(E) is not a periodic orbit). It can be shown that if the deformation of S̃2

ds(E) is small
enough then all points of S̃1(E) have p1q1 � 0, i.e. they are contained in the complement of the
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two volumes enclosed by the forward and backward reactive spherical cylinders Wf (E) and
Wb(E). Again, intuitively this can be deduced from figures 2(c)–(e), where the essential
point is seen in (d) where S̃2

ds(E) protrudes into the white, non-reactive region. This is
where the trajectories become tangent to S̃2

ds(E), i.e., at some point on S̃2
ds(E) trajectories

‘bounce off’.
Consider the part of S̃2

ds(E) which is contained in the forward reactive spherical cylinder
Wf (E) and marked by the light grey region in figure 2(e). The boundary of the light grey region
corresponds to the intersection with the forward stable and unstable cylinder branches Ws

f (E)

and Wu
f (E). The boundary is in general not a smooth manifold but it is homeomorphic to a

circle S1. It is possible to deform this piecewise smooth circle continuously onto the Lyapunov
periodic orbit S1

NHIM(E) without leaving the stable and unstable cylinders. Stokes’ theorem
implies that the difference between the integrals of ϕ along the piecewise smooth circle and the
Lyapunov periodic orbit is given by the integral of �′ over the region on the stable and unstable
manifolds swept out in the deformation process. The flux form �′ vanishes on the stable and
unstable manifolds as its definition involves the interior product with the Hamiltonian vector
field (‘there is no flux through invariant manifolds’). It thus follows that the flux through the
light grey part of B̃2

ds, f(E) in figure 2(d) is equal to the flux through B2
ds, f(E). Since the flux

form �′ is strictly positive on the complete hemisphere B̃2
ds, f(E), the forward flux through

S̃2
ds(E) is larger than the forward flux through S2

ds(E), and this completes the argument.
All the arguments above immediately carry over to systems with more than two DOF by

simply adjusting the dimension of the involved manifolds. The essential geometric conditions
and relations amongst the manifolds all hold.

The dividing surface of minimal forward flux is not unique, and this is the reason that we
chose iso-energetic deformations that did not preserve the NHIM. For example, the equation
p1 = aq1 with a (slightly) deviating from 1 again defines on the energy surface a (2n − 2)

sphere which is a dividing surface and which has the same forward flux as S2n−2
ds (E). We

considered a generic deformation which is a deformation that changes the equator of S̃2n−2
ds (E)

such that it no longer coincides with the NHIM S2n−3
NHIM(E). Non-generic deformations in this

sense do not change the flux. Similarly, our dividing surface for two DOF coincides with a
PODS in general only along its equator, i.e. at the Lyapunov periodic orbit, and this is what
matters for the flux.

Transition state theory is a fundamental theory for calculating reaction rates in chemistry,
and accordingly, there exists a vast amount of literature on this subject, most of which takes
a configuration space rather than phase space oriented point of view, and this leads to the
problems we mentioned in section 1. We therefore find it useful to relate the phase space
geometry described above to the seminal work by Pechukas [18] as a representative example.
Pechukas considers a quadratic potential with one saddle direction, for which it is easy to define
a dividing surface and to find the NHIM: ‘We set the reaction coordinate and momentum
to zero, and then we have [...] an unstable ‘molecule’ that hangs around forever if nothing
disturbs it’ (p 288). This unstable ‘molecule’ is the NHIM and it is easy to see that setting
the ‘reaction coordinate’ (the coordinate in the unstable direction of the potential saddle) and
the corresponding momentum to zero defines on an energy surface, with energy larger than the
energy of the saddle, a (2n − 3)-dimensional invariant sphere where n is the number of DOF.
The dividing surface is obtained by setting only the reaction coordinate (and not its momentum)
to zero. For the system with a quadratic potential this defines a (2n − 2)-dimensional sphere
which contains the (2n−3)-dimensional NHIM. Due to the separability of a Hamiltonian with
a quadratic potential, the NHIM and the transition state project to the same (n−1)-dimensional
hypersurface in the n-dimensional configuration space. This ‘degeneracy’ is highly misleading
(similar to the case of PODS) as in the projection to configuration space the distinction between
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the NHIM and the dividing surface is obscured. The coincidence of the configuration space
projections of the NHIM and the dividing surface does not mean that the NHIM divides the
energy surface into two components. Although in the configuration space projection it looks
as though a reactive trajectory would cross the NHIM, this is not true (in phase space).

The general theory developed in [16, 17] and in this letter implies that it is in general not
possible to find a dividing surface free of local recrossings as a (n−1)-dimensional hypersurface
in the n-dimensional configuration space (even not for systems of type kinetic-plus-potential
if non-linear terms are taken into account). For example, except for the special case of two
DOF, for which the NHIM is a Lyapunov periodic orbit, which projects to a one-dimensional
object in the two-dimensional configuration space, the (2n − 3)-dimensional NHIM projects
for n > 2 generically to n-dimensional objects in the n-dimensional configuration space.

Finally, we note that it is important to realize that, as stated above, we work entirely in the
neighbourhood of a saddle-centre-· · ·-centre equilibrium point. The normal form is used to
prove that the phase space geometry in this neighbourhood is as we describe it. On the other
hand, for kinetic-plus-potential Hamiltonians with two DOF the theory of PODS is used in a
broader setting. For energies sufficiently high above the saddle-centre equilibrium, the normal
form approximation might become invalid and the Lyapunov periodic orbit might undergo a
bifurcation. This is the case in [23] where the Lyapunov periodic orbit becomes stable at a
certain energy and, in a pitchfork bifurcation, gives birth to two new unstable periodic orbits.
The PODS theory can then be applied individually to these new periodic orbits which coexist
for higher energies and this leads to the notions of ‘repulsive’ and ‘attractive’ PODS which
correspond to local minima and maxima of the flux. Similarly, bifurcations might occur in the
case of more than two DOF, but the nature of these bifurcations is beyond existing theory. We
therefore restrict ourselves to the neighbourhood of validity of the normal form (by choosing
the energy sufficiently close to the energy of the saddle-centre-· · ·-centre).

4. Algorithm for computing the flux

Provided a generic non-resonance condition between the linear frequencies ωk is fulfilled,
the normal form Hamiltonian (3) assumes the simple form H(I, J2, . . . , Jn), where Jk =
(p2

k + q2
k)/2, k = 2, . . . , n, are action variables associated with the bath coordinates. Like

the saddle integral I, the actions Jk are constants of the motion. Writing the flux form �′ in
terms of action–angle variables we obtain the result that the forward flux through the dividing
surface is given by

FE = (2π)n−1V(E),

where V(E) is the volume in the space of the bath actions (J2, . . . , Jn) enclosed by the contour
H(0, J2, . . . , Jn) = E. In fact, the flux can be interpreted as the volume enclosed by a contour
of constant energy E in the phase space of a reduced system with one dimension less than the
complete system. In terms of the normal form coordinates, the reduced system is explicitly
described by the invariant subsystem which has q1 = p1 = 0. The normally hyperbolic
invariant manifolds are just the energy surfaces of this reduced system which is referred to as
activated complex in the chemistry literature. The dimensionless quantity FE/hn−1, where h

is Planck’s constant, is Weyl’s approximation of the integrated density of states of the reduced
system and can be interpreted as the number of ‘transition channels’.

In the linear case, we have H = λI +∑n
k=2 ωkJk and the energy surface H = E encloses

a simplex in (J2, . . . , Jn) whose volume leads to the well-known result (see e.g. [20] for an
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historical background)

FE = En−1

(n − 1)!

n∏
k=2

2π

ωk

showing that the flux scales with En−1 for energies close to the saddle energy. The normal
form allows to include the non-linear corrections to this result to any desired order.

5. Conclusions

In this letter we have given a geometrical argument showing that the directional flux across the
dividing surface for n DOF systems constructed in [16, 17] is a minimum, in the sense that the
flux corresponding to forward reactive trajectories (which is equal in magnitude but opposite
in sign to the flux corresponding to backward reactive trajectories) is a minimum. Hence it is
the optimal dividing surface sought for by variational transition theory.

The key point for the construction of the dividing surface is the existence of a NHIM which
exists on the energy surface near a saddle-centre-· · ·-centre equilibrium point and which mainly
controls the dynamics nearby. The NHIM has the topology of a (2n − 3) sphere which can be
considered as the equator of the dividing surface which is a (2n−2) sphere. The NHIM divides
the dividing surface into two ‘hemispheres’ which are open (2n − 2) balls. The hemispheres
are transverse to the Hamiltonian flow. Hence the dividing surface is everywhere transverse to
the Hamiltonian flow except for its equator (the NHIM) which is an invariant manifold. The
NHIM can be considered as the energy surface of an invariant subsystem (‘activated complex’)
with one DOF less than the complete system. The directional flux is the phase space volume
enclosed by the energy surface of this reduced system.

The dividing surface is not unique. Any (2n − 2) sphere which contains the NHIM as
its equator and which is transverse to the Hamiltonian flow except for its equator qualifies
for a dividing surface. Nevertheless, all these dividing surfaces lead to the same flux. This
makes it difficult (if not impossible) to compute a dividing surface from a variational principle
of codimension 1 manifolds of the energy surface. Similarly, the NHIM appears only as an
indefinite critical ‘point’ of the variational principle of codimension 2 manifolds of the energy
surface of MacKay [21] which makes it practically infeasible to compute the NHIM from
a variational principle. The normal form approach of [16, 17] is currently the only method
to determine these manifolds and also to compute the flux for which we gave an algorithm in
this letter.
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